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A formalism of electromagnetism covariant under the complex rotation group is first described and
then discussed thoroughly, in the case of two-dimensional electromagnetic fields, in homogeneous, iso-
tropic chiral media. As a result, we obtain the generalized Descartes-Snell laws, the Fresnel relations for
reflection and refraction, as well as the Brewster condition for plane waves incident on a surface of

discontinuity between chiral and achiral media.

PACS number(s): 03.50.De

I. INTRODUCTION

The Maxwell-Heaviside equations covariant under the
full Lorentz group L are not manifestly covariant be-
cause, on the one hand, the curl and the time derivative
operator do not form a four-vector and since, on the oth-
er hand, the electric and magnetic fields E,H are the
components F; ; and F,; of the electromagnetic field ten-
sor E,,,, (i,j,k,=1,2,3; u,v=0,1,2,3).

Using a manifestly covariant formalism makes calcula-
tions easier and safer. Now in a chiral medium, elec-
tromagnetism is not covariant under the full Lorentz
group but only under its connected component L, which
does not include inversions with respect to space and
time axes. An electromagnetic formalism covariant un-
der the complex rotation group O (3,C), isomorphic to
L, were developed many years ago [1,2] for homogene-
ous isotropic achiral media. Here I extend this formalism
to any homogeneous media and I prove that it is particu-
larly well suited to chiral media.

The plan of this paper is as follows. I first describe the
complex three-dimensional electromagnetism and the
corresponding Fourier transform. Then, the formalism is
discussed thoroughly for homogeneous chiral media in
the case where the electromagnetic fields do not depend
on one coordinate. As an application, I consider the
propagation of plane waves in homogeneous isotropic
chiral and achiral media when there exists a surface of
discontinuity.

Note that many people name bi-isotropic what we
name chiral.

II. THREE-DIMENSIONAL COMPLEX FORMALISM

I start with a discussion of the constitutive relations.
According to Post [3] the covariant constitutive relations
are

D=7E+yB, H=y'E+yB, (1)

where E, H are the electric and magnetic fields, D the
electric displacement, and B the magnetic induction. The
matrices 7, ¥, X satisfy the relations

n=n", x=x', Try=o0, 2)

where the symbol T denotes the Hermitian conjugation.
It is more convenient to define the constitutive relations
in the Tellegen representation [4],

D=e¢E+aH, B=pH+fE, (3)
with, according to (1),
e=n—yx'v', a=yx7', p=x"", B=—x""v".
4)

€, a, u, B are real constants in homogeneous media as
considered here. Let F,, and G, (u,v=0,1,2,3) be the
antisymmetric field tensors with components (E,H) and
(D,B), respectively. Each self-dual tensor (we use the
summation convention),

F,ﬁ,ZFﬂviéewaﬁF"‘B , G fv=GWiéewaBG"‘ﬁ ,

i=v—1, (5

where €,,,5 is the four-dimensional permutation tensor,
has three independent complex components defining a
complex vector

=t . ~+ .
; =E;+iH; , G/ =D;%iB; . (6)

Then using the vectors (6), the Maxwell-Heaviside equa-
tions

VXE=-3, B, VXH=3, D, x,=ct, @)

V-B=0, V-D=0, (7
become

VxFt=+i3,  G*, v-G*=0. (8)

0

These equations simplify in isotropic media, where
€,1,a,[3 are scalar because the four-vectors F+,G* may
be reduced to only two vectors. Leaving the case of an-
isotropic media for a forthcoming paper, I present now
the isotropic formalism.

Let us consider the two complex vectors, where pi,qi
are complex scalars to be determined later,

AT=p*E+ig*H . 9)
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Then I may write the Maxwell equations (8)
VXA*=+tin"d, A*, V-A*=0, (10)

nt and n~ are complex refractive indices and one sees at
once from (10) that the fields A® are solutions of the
wave equation

AAF—(n*); AT=0, (10)

where A is the Laplacian operator. Then taking into ac-
count (3), (7), and (10) I get the relations

e h, (11)
ntqt=p*uFigta,
which determines p*,q™ when the system (9) has a solu-
tion. This happens if the following condition is fulfilled:

(n*Fip)nttia)=eu . (11"

For an achiral medlum a=B=0, one has the solution
nt=(en)!?, pr=€'? q*:ul/z leading to
AT =€e2B+in'’H, used in the usual complex formalism
[1,2] and recently discussed in the spinor form [5].

III. COVARIANT FOURIER TRANSFORM
AND WAVE PACKET

In this section, I only use A" that I rename A since it
is easy to transpose the results of A" to A~. I also write
nforn™

Let us now consider a wave packet propagating in a

medium with the constitutive relations (3), (4). Since the
plane wave
ei(koxo—*nijj) (12)

with k3=|k|? is a solution of the wave equation (10), I
represent the wave packet by its covariant Fourier trans-
form

_ 1 i(kgxo—
Aj(x,,xo)—w f e

><$j(k1,ko)dkodk, , (13)

where 8 is the Dirac distribution and |k |*=k?+k3 +k3.
The indices take the values 1,2,3 and we use the summa-

nk.x.)

115 |k|

3/2 f

and for a simple time-harmonic process one has

A (x,,xo

(1K1, 0,0) =51kl —ko)¥;(6,9)

so that I get from (20)

172
ko

Ajlxpx0)= -

172 2m o
Ikl 2dlk] [T do [ "sinpdge

tion convention. The Dirac distribution means that, in
fact, the integration is not carried out over the whole
three-dimensional space time but only on the two cones
ko==|k|. These cones are separately Lorentz invariant
so that we arrive at the following Lorentz-invariant
decomposition

Aj(xp,x0)=A;  (x),x0) FA; _(x),x0) , (14)
with
Aj,i(m,xo):ﬁf e TR T g 2 (k]2
X$; 1k ko)dkodk; (15)
and
b,k ko)=Ulko)d,;(1k;, k) , (15"

where U is the Heaviside function.
Carrying out in (15) the integration on k gives, with
ko=+|kl,

+i(k0x0vnk1x1)

Ajxlxp,x0)= )3/2 f
><¢j’i(k,,k0)dk, . (16)
Then, I use the normalization
~ N 1
¢j,i(k1’k0)—w¢j,i(k1) , (17)

and from now on, I only consider wave packets made of

k|x
the time-harmonic processes e ° that I rename

o, I also write Aj, ¢;, for A; ,, ¢; . Finally I get
A (xprxg) = 5 f (Zko)l/zef(koxo—nk,xp
X¢;(k;)dk; . (18)
Using the polar coordinates
=lkley, k,=lklc,, k;=lklcsy, (19)
with
¢, =cosfcosp , c,=sing , cy;=sinfcosp, (19"

the relation (18) becomes

iIkI(xO-nc,

g (1kl,0,9) (20)

ik T T —ikyne,x
e 0% f02 do fo sinpdge Komey "4;(6,9) . (22)
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In the next section I discuss the formalism of Secs. IT and
III when the electromagnetic field does not depend on
one coordinate.

IV. TWO-DIMENSIONAL ELECTROMAGNETIC
FIELD

A. Equations

A problem which is completely independent of one
Cartesian coordinate, say y, is said to be two dimensional
(some people prefer to call it quasi two dimensional). The
important point is that the problems of this type are
essentially of scalar nature [6]. For such a problem the
Maxwell equations (10) reduce to

naonx(xV,xO)=iasz(x,,,xo) ,
ndy Ay(x,,x0)=i[3,A,(x,,x0)—08,A,(x,,%0)] , (23)
naonz(xv,xo)Z—-iaxAy(x,,,xo) .

From now on, the Greek letter indices take the values 1,3
corresponding to the x,z coordinates and we remind the
reader that A and n are identified, respectively, with AT
andn™t.

The substitution of (18) into (23) gives the algebraic
system of equations

ikond,(k,)—ksnd,(k,)=0,
ikgnd,(k,)+king, (k,)—knd,(k,)=0, (23"
ikond,(k,)+king,(k,)=0 .

This homogeneous system has a solution only if the deter-
minant of its coefficients is zero; that is, of course, if

k3=k?+k2. (24)
Then, the system (23') supplies the components ¢, in

terms of ¢, and using the polar coordinates (19') with
@=01 get explicitly, for the time-harmonic process (21),

Y (0)=F (0)y,(0), (25)
with
F(8)=—isin0@ , F;(0)=icos . (25')

Eami (Y Y AT+ (T =y ATl =€umi v v AT+ (T =y AT,

J

miln Ty +yHAY —n T (y7 =y AT =min Ty +y AT —n

Then substituting (25') into (22) and restoring the distinc-
tion between A, nt and A7, n 7, I get
172

k() ik X 27 —ik nTe xH
At , — |20 0%o 0 n
S(x,,x0) e fo e
XFE(0)y*(6)do, (26a)
k 1/2 N
Af(xv,x0)= _;0 elkoxo fo?.n-e—lkon*c#x#lpi(e)de i

(26b)

where ¥*(6) and ¥ (6) are some arbitrary complex
functions.

B. Boundary conditions

Let us consider a time-harmonic wave packet propaga-
ting in a medium made of two materials with different
constitutive relations of the Tellegen type (3),(4) and with
an interface in the plane x =0. I use the relations (26) in
the second medium and the same relations with letters
with a prime in the first medium containing the incident
wave (this convention simplifies the writing somewhat).

Let m denote the normal to the interface S. Then, in
terms of the E,H, B, D fields, the boundary conditions on
S are [7]

Ejk[mk(E]'—ElI)ZO N e-klmk(H[_H]I)=0 ’

; (27a)

m;(D;—D])=0, m;(B;—B])=0. (27b)

€4 is the permutation tensor and we use the summation
convention. Now from (9) one deduces easily

E+iH=(y+y)A Y +(y7 —vs)A™, (28)
and from (7) and (10)
D+iB=n"(y{+v AT —n " (y7 —y; AT, (28
with

ri=lbp g g™ ) p T, 29)

ra=lg +p pT) g1,
so that the boundary conditions (27) become

(30a)
Tyr —y2 AT (30b)

Since I assume the interface in the plane x =0, one has m;=3;, where 6 is the Kronecker symbol and the boundary

conditions (30) reduce to

[ v ) A T+ T =y AT L =y +y ) "A T H (T =y )AL, (31a)

(v OA T —n (7 =y A L =[n Ty +y DA T —n (7 =y AT, .

(31b)
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In the next section I use these expressions to discuss the
reflection and the refraction of plane waves.

V. PLANE WAVES IN HOMOGENEOUS
ISOTROPIC MEDIA

I now consider the behavior of plane waves when there
exists a discontinuity surface S. I discuss three possibili-
ties: (i) material on both sides of S is achiral; (ii) the re-
fracting medium is chiral; (iii) the reflecting medium is
chiral.

A

G

(xV,XO): o

with
F(0)=Fisind, F5(0)=1, Fi(0)=xicosd, (33)
while the boundary conditions (31) reduce to

(e7124u" VA +(e 2 =puT A, =]

’
¥,z 2

(34a)
n(e V2 4+u " VHAT —n(e V2 —u VA =n"[], .
(34b)

Let us now consider a plane wave with amplitude Q prop-
agating in the first medium. When this wave reaches the
interface S part of the wave is reflected and part is
transmitted; that is, in mathematical terms,

QiF;—r(Bi Je

172
A}t(xv’xo):% |_ ] elkoxoTiFji(ot)e

First note that at the boundary S the time variation of
the secondary fields must be the same as that of the pri-
mary incident field which implies

n’'sin@; =n'sinf, =n sin6, , (37

supplying the Descartes-Snell laws of reflection and re-
fraction. Now, substituting (36) into the boundary condi-
tions (34) gives the components Ry, Ry, T, Ty, in terms

-

k 172 4
0 ikyx 2w —ikyn—(x cosf+zsind)
— ] e 00 f e ° FiF

ikyn'(x cos®; +z sinf

;)
+R*F(6,)e ,

—ikyn(x cosf, +zsin6,)

A. Achiral material

For an achiral material one has a=f=0 in (3) so that
the solution of the system (11) is

nt*=Veu=n, p*=Ve=p, q*=Vu=q, 32
and according to (29)

=122 y%:%ﬂ—s/z. (32%)

Using (25) and (32) the expressions (26) simplify to

YHO)=0%8(0—0,)+R*8(6—6,),
(35)
YH(0)=T*8(6—6,),

where R*, TT are the reflected and refracted waves, 8 is
the Dirac distribution, and 8;, 0,, 0, the angles of in-
cidence, reflection and refraction, respectively. In agree-
ment with (9) and (32) Q, R, T are defined by the relations

QF=VeQ+iVi'Qy ,
R*=VE€Ry+iVu'Ry , (35"
TH=VeT,+iVuT, .

Recall the convention that letters with a prime concern
the medium of the incident wave. Then substituting (35)
into (33) gives

—ikyn'(x cosf, +zsinb, )

(36a)

(36b)

of Qp, Q. Then using (37) one checks easily that the
condition (34a) for the y component and the condition
(34b) give the same relation

Qr+Rp+i(Qu+Ry)=Tg+iTy , (38a)

while the condition (34a) for the z component gives (since
cosf, = —cosb;)
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172 172

(Qr —Rpg)+icosh;

’

£z
6,

cosf;

(QH—RH)ZCOSB,

172
Ty +icos0,

1/2
Ty . (38b)

122
€

From (38a) and (38b) a simple calculation yields the Fresnel relations

2 sinf,cosb;

sinB,cosf; — (u' /1 )sinf;cosO g

Tg= - , Rp.=
E " sin@,cosf; +(u' /u)sin;cosh, Or E

2cosf; V' /€

sin6,cosf; + (u' /p )sind;cosh,
V' /€ cos; —V /€ cosh,

Ty=—F—= —_—
B Vi /e'cosh, +V /€ cosh, On

R = —
B VW /e'cosh, +V /e cosh,

It is usual [6] to discuss the Fresnel relations in terms of the E |, E | components of O, R, T, where E| and E denote,
respectively, the electric field perpendicular and parallel to the plane of incidence. Since one has

(Q,R,T),=(Q,R,T); , (Q,R)=€¢"VAQ,R)y

one checks easily that the expressions (39) are equivalent
to the usual ones.

B. Chiral refractive medium

Now assume that the material is achiral in the first
medium and chiral in the second one and recall that the
incident wave is in the first medium for which I use the
primed letters p’, g, n’, Aj.

Taking into account (11’), take as the solution of the
system (11) for a homogeneous chiral medium

pi (1+ta/n )1/2’ q_._ 1/2(1+1/3/n 1/2
(41)
(a+ )2 172 .
nt= elu__q_ﬁﬁ_ ié(ﬁ—a)

and one has
prgt=eun®*)" 1. (42)

Substituting (41) into (29) and using (11’) a simple calcu-
lation gives

, Ty=e 2Ty | (40)

N e 12 ntai )]1/2
1 =—F—— |n"(n"*ia ,
Vi nt+n~ 43)
-1/2 1/2
vi=—t—— |t Fip|
n"+n
leading to
+ +__n" L q
+y, =0 + ,
71 Y2 ++n € w
(43"
- y-=_ " |P 4
Y1 Y2 n++n7 € w

In the achiral medium one has according to (32) and (32')

P'iz‘/?zpl qr:t=‘/;r=qa nlizl/?ﬁ—l:nl ,
(44)

with
piE=le I, =1 @)

Then, using (43") and (44’) the boundary conditions (31)
become

1 1L |+ L |p-= p- g_ + n__ P _ 4 |A-
Ve vy | v V' »e ++n € n T+n~— | € u »z
1 1 + 1 1 —_ _(n* pt gt e T pT g |-
! —+—— (AT —n’ —— = + 24— |AT— —Z1— 1A, . (45b)
Ve TV | Ve Vi nT+n" | € 7 * nt+nT | € u x
Now, using (25), (41), and (44), the expressions (26) for the fields A} and A; become
X 172
A,ji(xv’xo):% 70 eikoxo QiFjj;(ei Ye —ikyn'(x cosf; +zsinb; )+R (er e —ikyn'(x cosb, +zsind,) ] ’ (46a)
X 172 - e
Aji( v’xo)z_;_ _0 eikoxOTiFj_t(g;t)eftkon*(x cos6; +2zsinf;-) ) (46b)
T
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with
Fi(6)=TFising, FFf(0)=1, Fi(0)=xicosd, 47)

while in agreement with the relations (9), (41), (44) the
fields Q, R, T are given by the expressions

Qt:‘/?QEii‘/;’QH ,
RT¥=VE€R +iVu'Ry , (48)
T =p*Ty+ig Ty .

Let us first discuss the kinematic conditions for reflection
and refraction,

n'sinf; =n'sin, =n *sin0,;" =n “sing, . (49)

According to (41) n* and n~ are complex conjugate,
consequently 6" and 6, are also complex conjugate.

|

+ - 1 n+

1 +2+ n- 1
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Then, writing

nt=n,tin, , 6F=6,%i6,, (50)
I get from (49)
. nn’sind;
sinf,cosh6, = ———-,
ni+n;
- (51)
n,n’sing;
cost)coshf, = — ———-
ni+nj

These relations represent the generalized Descartes-Snell
law for refraction of a plane wave in a chiral medium.
One sees at once that Eqgs. (51) have two solutions since
they are invariant under the transformations.

Let us now discuss the boundary conditions (45). I first
obtain from (11’) and (41) the relations

n 1 n - _
LI ~(p P=1="-2 - —(g7)?, (52a)
nt+n- € nt+n- et n++n_,uq n++n"#q
n' p'q’ _ n pq o _n" p'qt _n= pq” (52b)
ap— T - - :
n"+n € n"+n € n" +n u n"+n u

Then, I prove that the condition (45a) for the y component and the condition (45b) supply the same relation. Assuming
that the kinematic conditions (49) are fulfilled I get from (45a) and (46)—(48) for the y component

1 1 — I 1 1 — [
nt  |pt  q* [ + + n~  |lp~_gq | - -
= + 24— Tp+ig Ty | +——— —2— (p Tg—ig Ty), (53a)
nttn- c i p lgTig Iy nttn— e P p 1fg—ig Iy
while taking (49) into account I get from (45b)
) 1 1 - I ) 1 1 — S
n'sind, T/—?‘F‘/ﬁ' {(VE(Qr+Rp)+iVu'(Qy+Ry)} +n'sing; \/——e—’_ﬁ {(VE(Qr+Rg)—iVu'(Qu+Ry)}
[ [
n'n " sind; pt gt n'n” sing; - -
=t + 4 \pHTp+ig Ty +———— | B—— 24— |(p"Tp—ig Ty) . (53b)
nttn- c 1 p Lgmig Iy nttn- € " p lg7lqg 1y
Dividing (53b) by n’sinf; supplies (53a). Now, taking into account (52a) and (52b) the relations (53) reduce to
Qr+Rp+i(Qu+Ry)=Tg+iTy , (54)

which is the same relation as (38a). Now consider (45a) for the z component. Still using (46)—(48) one has, since

cosf, = —cosb;,

’ ’
€
’

cosf;
1 6,

1/2 172
] (Qp—Ry)~+icoso, [J“—] (Qu—Ry)=

Then, taking into account (11'), (41), (50), (52a), and (52b) the relation (55) becomes

172
(Qg —Rp)+icosb,;

172

’

©®

cosf; -
€

’

ntcosd! | ,+ +

ras et @ et T

n~cosf, - -

s e T e Temia T (55)
cos@,coshf, ) o ]
71”—7[2e+1(a+3)]+1sm@lsthZ Ty

cos8,coshf, ) )

—[2u—ila i sin@;sin iTy ,

0t Tn [2u—i(a+B)]+isinf,sinh6, {iTy (56)
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then write
, 172 , 1/2
cosé, -7] (Qu—Ry)+i cosh, 1’:—] (Qu—Ry)=
with

£, =sin0,sinh6,+ 28
2n,

cosf,coshf, ,

£, =sin6,sinh6,— & :B cos@,cosh, .
1

From (54) and (57) I get the relations

Rp=Tp—Qp, Ry=Typ—Qp ,

12 L 172
2 cosb; —6—, Or= | |— cosf; + nicoselcoshé’2
1
, 172 ()12
2 cos0; }é,— ] Oy= {%— J cosf; + —r‘llicoselcoshez
1

From (58b) and (58¢) I get

- 2 cosb;
B Apdyt+épéy
, 12 , 1172
€
X\ = ApQp+ < §HQH’ ,
_ 2 cosb; (59a)
TH_——
Ap Ay +Epéy
, 172 , 172
€
X ‘Z_, ApQn— ’ §Qk | »
and substituting (59a) into (58a) leads to
. , 1172
Ry=——————— |BQp+2cos0, | £ oy,
E AEAH+§E§H EXE i € ] gH H
(59b)
172
Bp=2cosb, | — Ap—Ap Ay —Epbn »
172
R SR — By Qpy—2cosb; € ExQ
# Ap Ay +Epéy e e EXE
(59¢)
, 1172
By =2cos; |+ Ap— Ap Ay — &gy -

MANIFESTLY COVARIANT FORMALISM FOR . . .
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~E—cos91cosh02+i§E T+ —nE*coselcoshOZ-l—igH iTy ,
n1 1
(57)
(57)
(58a)
Tp—EéuTy=AgTp—64Ty (58b)
Ty+EpTp=EsTp+ ATy . (58¢)

The expressions (59) are the Fresnel relations for the
reflection and the refraction of a plane wave when the re-
fractive medium is chiral. One checks easily that when
a=B=0 the expressions (59) reduce to the usual Fresnel
relations (39).

C. Chiral reflective medium

Now consider the case where the incident wave propa-
gates in a chiral medium. It is easy to transpose the re-
sults of the last section to this situation. First the kine-
matic conditions (49) become

n'*sin@, =n'*sin@, =n sin6; , (60)

the angle of refraction 6 is still complex and with
n't=n'tin}, 6F=0,%i6,, we obtain

’ ’

n n
sin@lcosh62=715in6, , coselcosh92=~n£sin0,- , (61

which is the Descartes-Snell relation for refraction in a
chiral reflective medium.

It is easy to check that the relation (54) is still valid
while instead of (55) one has
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cos0; , Vo _cosb;
oy [2¢'+(a'+B)(Qp —Rg)+i o [ew' —i(a’+B)]1(Qy—Rpy)
1 1
111 + - 1 + - |ve
=5 —\/——e(coset —cosf, )+ ‘/—E(cose, +cosf, ) |VeTg
i 1 - 1 — ~
+3 —‘/—2(0059,+ +cosf; )+ ‘/—p(cosof-cose, ) [VuTy , (62)
leading to
172
€' a' +p e . .
—cos0,(Qp —Rg)+ ~—co0s0,(Qy —Rpy)= ; cosB,cosh, Ty +sinfsinh6, T}, ,
ny ny
172 (63)
%cos@,—(QH—-RH)-F az_:lﬁ cos,(Qr —Rp)= ‘lei cosf,cosh8, Ty —sin6;sinh0, Ty .
1 1
Using (58a) to eliminate Rz and Ry, Egs. (63) give
2 cos0; € € 2 '+p . .
—[€'Qp + 1 a'+B)0y 1= | —cosh; + |— cos@coshb, | T+ —cos0; +sinfsinh6, | Ty ,
n} nj u© ni
2 cosb; , 172 e (64)
- '[[u'QH-I-%(a'%-B')QE]: -&,0030,-%- ‘Lei cosf,coshf, | Ty + %—Fcos@i—sinelsinhez Ty .
1 n, ny

The system (64) is easy to solve but it supplies intricate
expressions. To simplify assume o’ + =0 and get

_2cos0; | €KyQp—u'sinf;sinh6,0y
Eoomy K K ; +sin%0,sinh?6, ’
(65)
T — 2cos0; | u'KgQy +€'sinfsinh0,0p
Y K ;K j; +sin®6,sinh6, ’
with
172
€ €
Kg=——cosf;,+ | — cos6f,coshé, ,
ni p ,
) 12 (65")
Ky= H—,cos9[ + % cosf,cosh@, .
U

The expressions (58a) and (65) are the Fresnel relations
for the reflection and the refraction of a plane wave when
the reflective medium is chiral and when o'+ f3'=0.

All three problems discussed in this section have been
comprehensively handled by Lakthakia and Al [8,9].

VI. BREWSTER’S CONDITION

As recently discussed by Lakhtakia [10] the definition
of the Brewster angle has changed along the years. Ini-
tially, the Brewster condtion implied that for an unpolar-
ized light incident at the Brewster angle, the reflected
light is plane polarized. In [10] a modern interpretation
that is faithful to Brewster’s original thoughts is given
that is also more powerful than simply a zero-reflection
condition.

Now let Q denote a wave packet with components Qp,

Qp incident on an interface S. It generates a reflected
wave R with components Ry, Ry and a refracted wave T
with components Ty, Ty. In a general medium there ex-
ists a matrix relation between R, T, and Q,

Ry Ry Ry | |Q
Ry | |Ry Ry||Qu|”’
(66)
Ty T, Ty||Qk
Ty | Ty Tyn||Qu|’
where R, T (i,j,=1,2) are the coefficients of reflection

and refraction, respectively.
Then, the Brewster condition is [11]

R{iRy—R; R, =0. (67)

In homogeneous isotropic achiral media one has
R,=R,;=0 so that (67) reduces to R;;R,,=0. Now
according to (39) one checks easily that R,; cannot be
zero while R,, =0 implies

nu'cosf;, —n'pcosd, =0 , (68)

which is the usual relation [6] (taking into account our
convention that the primed letters concern the medium
of the incident wave).

Let us now consider the Brewster condition (67) for a
chiral refractive medium. According to (59) one has

R, = B CR,= 2c080,V' /€€y ,
Ag AH+§I<:‘_§L Ap Ap+Epén 69)
Ry = —2cos0, Ve /u'Ey R,— By ,
ApAy+Epéy Ap Ay +Ep€y
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so that the condition (67) becomes
BBy +4c08%0,EpE4 =0 . (70)

To simplify the discussion of (70) assume a=pf3, which
implies

ny—o, m=n=(eu—a®)'? 6,=0, 6,=6,,
(71)

and according to (57'), (58b), and (58c) (further assume
that u'=1)

Ag =\/—ec056i+%cos9, , (71"

1
Ay= —&?cos&- + %cos&, )
so that
Ap Ay +EpEy =cos?0; +cos0,
+ lcos@,»cose,(,u\/_e—’—f~€/\/_cs—’) . (72)
n

Then, from (59b) and (59¢) I get

Bj =cos’0; —cos0, + icos@,cos@, Ve ——= l ,
n Ve
(73)
By =c0s°0, —cos*0, — %cosO,cosB, uV'e — ;?

Taking into account (71’) and (73) the condition (70) be-
comes
(cos?8; —cos?6,)?— %cosza
n
L

—%cos%6,=0 . (74)
n

uve ———

X cos?8, o
€

It is easy to check that for a =0 this condition reduces to
(68). Equation (74) has the solutions cosf;=A cos6,
which have to be consistent with the Descartes-Snell law
while A is solution of the equation
2 2 —
W—12-25 —E =0, a=pVé——= . (75)
n? n? © Ve

Using (58a) and (65) one should discuss in the same way
the Brewster condition for a chiral reflective medium.

VII. CONCLUSION

As expected the complex formalism of electromagne-
tism covariant under the complex rotation group pro-
vides an useful tool to discuss electromagnetic fields in
chiral media. For time-harmonic plane waves the
Descartes-Snell laws, the Fresnel relations for reflection
ad refraction, as well as the Brewster condition for
plane-polarized reflected fields are obtained in a rather
simple way. These results may be considered as justifying
the use of the complex formalism. And they suggest to
go on with more difficult problems first by expliciting the
formalism for the general Maxwell equations and second
by considering the case of anisotropic chiral media. It
should also be interesting to consider the propagation of
time-harmonic processes with nonlinear phases such as
the focus-wave modes. Finally the physical interpreta-
tion of some of the mathematical expressions obtained
here has to be discussed carefully.

The group SL(2,C) of the 2X2 unimodular matrices is
also isomorphic to L, leading to a spinor form of elec-
tromagnetism already investigated by Einstein and Maier
[12] many years ago. Succinctly the electromagnetic spi-
nor field is made of two traceless second-rank spinors v/}
and ¢ (r,s=1,2, Y1+43=0, p!+¢3=0) defined in an
isotropic achiral medium by the relations

Y, =0 (E;+iH;), i=V —1, j=

¢,=0o},(D;+iB;) ,

1,2,3,
(76)

where o, are the components of the Pauli matrices. The
Maxwell equations in the spinor form are

Y+ ,9: =0, (77)
with

9,=07,9;, 8,,=0%,0; , Xo=const . (77"

Then, an interesting question is whether spinor formalism
has a significant advantage on the three-dimensional
complex formalism. To answer this question I first gen-
eralized (76) and (77) to an isotropic chiral medium and a
spinor analysis of the problems discussed in Sec. V has
been performed. Unfortunately the question of the better
formalism is still open, awaiting the analysis of more
complex situations. So I refrain from presenting this
analysis since one obtains the same results as in Sec. V.
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